Data Science

Data Science Training

Contents

  • 1 Data Science Training Overview
  • 1.1 Objectives of the Course
  • 1.2 who should go for this course
  • 1.3 Course Duration
  • 2 Data Science Course Content
  • 2.1 Introduction to Data Science
  • 2.2 Data
  • 2.3 Big Data
  • 2.4 Data Science Deep Dive
  • 2.5 Intro to R Programming
  • 2.6 R Programming Concepts
  • 2.7 Data Manipulation in R
  • 2.8 Data Import Techniques in R
  • 2.9 Exploratory Data Analysis (EDA) using R
  • 2.10 Data Visualization in R
  • 2.11 HADOOP
  • 2.11.1 Big Data and Hadoop Introduction
  • 2.11.2 Understand Hadoop Cluster Architecture
  • 2.11.3 Map Reduce Concepts
  • 2.11.4 Advanced Map Reduce Concepts
  • 2.12 Hadoop 2.0 and YARN
  • 2.13 PIG
  • 2.14 HIVE
  • 2.14.1 Module-9
  • 2.15 HBASE
  • 2.15.1 Module-11
  • 2.16 SQOOP
  • 2.17 Flume and Oozie
  • 2.18 Projects
  • 2.19 Project in Healthcare Domain
  • 2.20 Project in Finance/Banking Domain
  • 2.21 Spark
  • 2.21.1 Apache Spark
  • 2.21.2 Introduction to Scala
  • 2.21.3 Spark Core Architecture
  • 2.21.4 Spark Internals
  • 2.21.5 Spark Streaming
  • 2.22 Statistics + Machine Learning
  • 2.22.1 Statistics
  • 2.22.1.1 What is Statistics?
  • 2.23 Machine Learning
  • 2.23.1 Machine Learning Introduction
  • 2.24 Python
  • 2.24.1 Getting Started with Python
  • 2.24.2 Sequences and File Operations
  • 2.25 Deep Dive – Functions Sorting Errors and Exception Handling
  • 2.26 Regular Expressionist’s Packages and Object – Oriented Programming in Python
  • 2.27 Debugging, Databases and Project Skeletons
  • 2.28 Machine Learning Using Python
  • 2.29 Supervised and Unsupervised learning
  • 2.30 Algorithm
  • 2.31 Application Example
  • 2.32 Scikit and Introduction to Hadoop
  • 2.33 Hadoop and Python
  • 2.34 Python Project Work